CMIP5 – Performance and Climate Change Assessment of maximum and minimum temperatures in Europe M.J. Carvalho, P. Melo-Gonçalves and A. Rocha

CESAM and Department of Physics, University of Aveiro

Correspond to mariajcarvalho@ua.pt

Motivation

Centre for Environmental and Marine Studies

www.cesam.ua.pt

CESAM

Climate Change, especially in the regime of extreme events is the focus of many studies. This is due to the fact that extreme events have a near-immediate effect on every-day life issues.

Under a changing climate, it is expected that

Data & Methodology			
OBSERVED DATASET :	MODELED DATASETS:	<u>TIME PERIODS</u> :	
→ E-OBS V9.0 on a 0.25 degree regular grid	Model List in Table 1. → Each model has a different	→ Recent-past 1986 – 2005	
→ Re-gridded to each of the models' grids	horizontal resolution; → Ensemble mean is determined based on the re-gridded form of	→ Long-term future 2081 – 2100	

these events will become more common.

Is this true for Europe? And if so, what are the geographical differences?

Objective

the performance of CMIP5 Evaluate recent-past simulations models in for Europe.

II. Within Europe, define areas of coherent climate change patterns in temperature

III. Determine what is happening and will happen in the future to extreme events.

Model Performance

Model	tasmax/ tasmin	Taking the time series
ACCESS1-0	99.6	for the recent-past
		(1000 0000) the 0

based on the re-gridded form of the models, with a $1.5^{\circ} \times 1.5^{\circ}$ horizontal resolution.

RCP 8.5

INDEXES USED:

- → Maximum Temperature
 - \sim Cold Days (TX10p): Number of days when the tasmax < 10th percentile.
 - Warm Days (TX90p): Number of days when the tasmax > 10th percentile.

→ Minimum Temperature

- Cold Nights (TN10p): Number of days when the tasmin < 10th percentile.
- Warm Nights (TN90p): Number of days when the tasmin > 90th percentile.

The percentile was determined a 5-day using window, based on the recentpast period.

Results & Conclusions

RCP8.5 Daily Climat. – Historical Daily Climat.

Multi-feature K-Means Clustering Analysis

The multi-features are, not only the 2 variables, but also the 15 simulations.

decrease in cold nights/ days, but not reaching the This work was supported by FEDER funds through the Programa Operacional Factores de Competitividade – COMPETE and by Portuguese national funds through FCT -Fundação para a Ciência e a Tecnologia, within the framework of the RESORT Project Reference PTCD/CTE-ATM/111508/2009 and Reference PTDC/AAC-CLIPE Project CLI/111733/2009.

Figure 2: Mean yearly series of the cold/ warm days and cold/ warm nights for the recentpast (1986-2005) on the left and long-term future (2081-2100) on the right for each of the European regions.