
Regionalization of Europe based on a K-Means Cluster Analysis of the1

climate change of Temperatures and Precipitation2
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Abstract5

In order to study climate change on a regional scale using Earth System Models, it is useful to

parition the spatial domain into regions according to their climate changes. The aim of this work is

to divide the European domain into regions of similar projected climate changes using a simulation

of daily total precipitation, minimum and maximum temperatures for the recent-past (1986 –

2005) and long-term future (2081 – 2100) provided by the Coupled Model Intercomparison Project

(CMIP5). The difference between the long-term future and recent-past daily climatologies of these

three variables is determined. Aiming to objectively identify the grid points with coherent climate

changes, a K-Mean Cluster Analysis is applied to these differences. This method is performed

for each variable independently (univariate version) and for the aggregation of the three variables

(multivariate version). A mathematical approach to determine the optimal number of clusters is

pursued. However, due to the method characteristics, a sensitivity test to the number of clusters

is performed by analysing the consistency of the results. This is a novel method, allowing for

the determination of regions based on the climate change of multiple variables. Results from this

method are in accordance with results found in the literature, showing overall similar regions of

changes.
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1. Introduction7

Climate change studies are usually carried out either globally or regionally. Either way, they usu-8

ally focus on areas with different climate characteristics and large variability. In Europe, temporal9

variability of daily surface climate variables (such as minimum and maximum temperatures and10
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precipitation) has high spatial gradients. Therefore, statistics of the temporal behaviour of a par-11

ticular variable or its derived quantities over the target domain must be estimated taking into12

account these spatial gradients. Some statistics can be displayed over a map; however there are13

statistics, such as Probability Density Functions at each grid point of the domain, that are impos-14

sible to be displayed in a map. Because of this, it is mandatory to reduce the number of degrees of15

freedom which, in this case, consists of a reduction of the time series representative of the domain.16

This, together with the large amount of data, adds up to the need to define regions to be analysed17

using either grid point as a representation of the region or the average behaviour of the grid points.18

19

In an attempt to divide the overland areas of the globe into a manageable number of regions,20

each with simple shape and representing a different climatic regime, several authors (such as21

Sillmann et al. (2013, 2014)) have followed the approach of Giorgi and Francisco (2000). When22

studying the uncertainty in regional climate change prediction using ensemble simulations from23

a coupled Atmosphere-Ocean Global Climate Model (AOGCM), they proposed a division of the24

domain, creating rectangle-like overland areas, admitting, however, that this was a subjective ap-25

proach to the issue. On a regional scale, the simple use of geographic markers has been extensively26

used in order to define regions. For example, in their study of European heat waves in present-day27

and future climates, Lau and Nath (2014) simply divided the domain into three regions: Russia,28

eastern Europe and western Europe. Much like this, when studying record high maximum and29

low minimum temperatures, Meehl et al. (2009) used the 100 ◦W meridian to divide the United30

States of America into eastern and western USA. Fischer and Schär (2009) simply use the Iberian31

Peninsula, Scandinavia and France as key regions when studying the PRUDENCE regional cli-32

mate model scenarios for temperature and the driving processes in temperature extremes while33

Wójcik (2014) divides Poland taking into account some orographic characteristic in order to study34

the reliability of CMIP5 simulations in reproducing atmospheric circulation. An upgrade to this35

methodology is the approach of Fischer et al. (2014) who segregate grid points based on their alti-36

tude, in order to study projected changes in precipitation intensity and frequency in Switzerland.37

38
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Due to the subjectivity of the regionalization methodologies described above, several authors have39

pursued a more objective approach. For example, Richman and Lamb (1985, 1987) used Principal40

Component Analysis (PCA) in order to study the spatial distribution of three- and seven-day41

rainfall events for the USA and Canada, respectively. In a later work, White et al. (1991) applied42

Rotation Principal Analysis to monthly precipitation in Pennsylvania using different rotation al-43

gorithms in order to assess the sensitivity of the regionalization result to rotation. They found44

that the resulting regions varied widely with the use of different rotation algorithms.45

46

In addition to having been used to identify Weather Types (or Weather Regimes) by Santos et al.47

(2005), Cluster Analysis has also been used to define climatic regions. DeGaetano and Shulman48

(1990) applied a flexible clustering technique to the first three principal components of several49

climatological variables in order to identify regions of coherent plant hardiness. Much like this,50

Fovell and Fovell (1993) used K-Means Cluster Analysis in order to identify climatic zones of the51

Conterminous United States based on both temperature and precipitation.52

53

However objective these studies may be, they regionalize the domain using observed (or mod-54

eled) data for a given period and therefore obtain regions of coherent climate. In a changing55

climate, the main interest becomes knowing the regions of coherent changes, instead of the defini-56

tion of regions with the same climate characteristics, since they can change in time. The main goal57

of this work was to identify regions with consistent climate changes in precipitation and surface58

minimum and maximum temperature seasonal cycles in Europe.This is a novel method, allowing59

for the determination of regions based on the climate change of multiple variables.60

2. Method and Data61

The data used was provided by the Coupled Model Intercomparison Project Phase 5 (CMIP5),62

simulated by the MPI-ESM-LR model with the r1i1p1 initialization, with a horizontal resolution of63

1.9◦ horizontal resolution (Giorgetta et al., 2013). As a representation of the recent-past climate,64

the last 20 years (1986 – 2005) of the historical experiment which runs from 1850 to 2005 were used.65
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The future climate used was simulated by using the 8.5 Representative Concentration Pathway66

(RCP8.5) which stabilizes radiative forcing at 8.5 W ·m−2 in the year 2100 without exceeding that67

value (Riahi et al., 2011). From the future climate experiment, which runs from 2006 to 2100,68

only the long-term future (from 2081 to 2100) was used in this work, since changes for this period69

relative to the recent-past are expected to be greater than those found for both the near-term70

(2016 – 2035) and mid-term (2046 – 2065) periods. The variables used were the daily minimum71

and maximum near-surface air temperatures as well as total daily precipitation, which includes72

both liquid and solid phases from all types of clouds (both large scale and convective). The simu-73

lations are available for the entire globe. However, this study focused on a domain containing only74

Europe: 25 ◦N− 70 ◦N, 45 ◦W− 65 ◦E. This domain is presented in Figure 1 where the model grid75

points corresponding to the aforementioned resolution are also plotted.76

77

Taking each of the two climates – recent-past and long-term future – daily climatologies of each of78

the variables were determined, for each of the domain grid points, using a 15 day-running window79

as a low frequency filter. Taking each grid point, the difference between the recent-past and long-80

term future climatologies were determined, creating a measure of the changes in the seasonal cycle.81

82

The challenge was then identifying grid points where the changes in the seasonal cycle of the83

variables are similar. To the difference fields, the K-Means Cluster Analysis was applied. This is84

a non-hierarchical clustering method which starts by computing the centroids for each cluster and85

then calculates the distances between the current data vector and each of the centroids, assigning86

the vector to the cluster whose centroid is closest to it. Since this is a dynamic method, meaning87

that vectors can change cluster after being assigned to it, this process is repeated until all vectors88

are assigned a cluster and their members are closest to the centroid than to the mean of other89

clusters (Wilks, 2011). The mathematical condition for the cluster Ck and the k centroids µk can90

be expressed as Equation 1.91

Minimize
K∑
k=1

∑
xn∈Ck

‖ xn − µk ‖2 with respect to Ck, µk (1)
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It is important to note that, unlike when applied to determine weather types, the K-Means Clus-92

tering is done in space and not time, resulting in each grid point (instead of a time step) being93

assigned to a cluster.94

95

The described methodology was applied to the climatology differences of each of the three vari-96

ables independently (univariate version) and using the daily climatology differences of a synthetic97

joint variable composed by concatenating the temporal-varying spatial fields of the three variables98

(multivariate version). Since the goal is to determine one set of regions on which to base the anal-99

ysis, the univariate version is only used to, once more, analyse the consistency of the multivariate100

results and ultimately validate them, since this is a novel statistical approach.101

102

In order to determine the number of clusters, the Gap Statistics was used as described by Pham103

et al. (2005). However, since this is a blind statistic, the sensitivity to the number of clusters was104

estimated by computing the K-Means for different k’s, which allowed for the verification of the105

results’ consistency.106

107

Lastly, the statistical significance of the differences between the regional averaged long-term future108

and recent-past daily climatologies for each variable was estimated using the non-parametric Rank-109

sum test (Mann and Whitney, 1947). This test was chosen due to its resistance to wild data or110

outliers which could otherwise contaminate the results by providing false negatives (Wilks, 2011).111

Furthermore, since it is a non-parametric test, it does not require data with a normal probability112

distribution.113

3. Results and Discussion114

Due to the chosen clustering method, the number of clusters, k, must be chosen a priori. Using115

the Gap Statistics as described in Section 2, it was determined that k = 6 was the optimal choice.116

As mentioned before, since this is a purely mathematical method, the clustering analysis was also117

performed with k = 3, 10 and 13. For each k, the method was applied to each of the variables118
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individually, followed by the multivariate version. For the sake of conciseness, and since the119

univariate version serves as a validation of coherence, only the results of the multivariate cluster120

analysis will be presented.121

3.1. Regionalization122

When applying the clustering algorithm to each of the variables using k = 3 (results not shown),123

the domain is divided into three regions which are similar for maximum and minimum tempera-124

tures, with the exception of the Mediterranean region which is grouped together with the Atlantic125

region for minimum temperature and with northern Europe for maximum temperature. Precipita-126

tion regions show a clear division of Europe into two along the 55 ◦N latitude, with the third region127

located northwest of Iceland being considerably smaller. Results obtained by the multivariate ver-128

sion, shown in Figure 2a), are consistent with those obtained by the univariate one. There is a129

region south of 40/50 ◦N latitude, which includes north Africa, the Mediterranean, Italy, Greece130

and most of the Iberian Peninsula. The second (middle) region goes from the 40/50 ◦N latitude131

up to 60 ◦N overland, and encroaches up to the upper boundary of the domain over the Atlantic132

ocean. The third regions encloses two subregions: northern Europe (north of 60 ◦N) and Greenland.133

134

When the number of clusters is increased, there are more regions to which each point can be at-135

tributed and therefore the regions obtained will provide a more detailed definition of the changes.136

As for k = 3, the k = 6 regions obtained for maximum and minimum temperatures are similar137

and differ from the precipitation ones especially over the Atlantic ocean, in the western most part138

of the domain. In this area, there is a larger number of regions for precipitation while there is139

more differentiation over land when temperature is used. The regions based on the precipitation140

changes follow the approximate layering described for the multivariate k = 3 regionalization for141

the overland area while, for the western side of the 20 ◦W meridian, there is an increased number142

of regions from three to four. Results obtained by the multivariate version, shown in Figure 2b),143

approximately follow the temperature ones; there is a small region over Greenland and a larger144

region over the northern part of the Atlantic. The southern region of the Atlantic ocean belongs145

to a distinct region which extends into the Mediterranean and includes countries such as Por-146
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tugal, southern Spain, western France, and Italy). Overland points in Africa are grouped into147

another region, while the remaining parts of Europe are divided once more approximately along148

the 55/60 ◦N parallel. The fact that so many overland points belong to the southern-Atlantic and149

Mediterranean region is most likely due to the combined effect of the model’s coastline and its low150

resolution.151

152

The results for k = 3 results show that there is a latitudinal layering of the changes affecting pre-153

cipitation as well as maximum and minimum temperatures in Europe. These results are consistent154

with the work of Field et al. (2014) who have shown that there is a clear latitudinal differentiation155

of climate change of precipitation and temperatures, as well as extreme events such as dry spells156

and heat waves. Also, there is a distinctive area of changes in central Europe which, in this study,157

appears in the k = 6 regionalization.158

159

When applying k = 10, the number of regions is higher over the Atlantic for precipitation and160

over land for the temperatures, even though more balanced than what was found for a lower k.161

Also, in the univariate versions of the clustering, the regions become less organized and layered162

when compared to what happened for a lower k. However, the multivariate regionalization shown163

in Figure 2c) retains the horizontal layering format, even though presenting differences between164

overland and over-ocean areas. The north African region, obtained for k = 3 and 6, become di-165

vided into two distinct regions: one between the 30 ◦N and 40 ◦N parallels in the overland points,166

and another below the southern parallel. Once more Europe is divided into three belt regions:167

the first between the 40 ◦N and 50 ◦N parallels, the second up to the 60 ◦N and the third, north of168

that. It is noteworthy that some grid points in the southern Iberian Peninsula are attributed to169

the same region as north Africa. However, this should be considered carefully since the connection170

between the two parts of the region, as well as the Iberian part of the region itself, is cell-thin.171

Over the ocean, one of the regions includes the entire Atlantic below 40 ◦N, encroaching into the172

Mediterranean (similar with a region found for k = 6). Above that, there is another region which173

is bordered above and to the west by a different one. As seen for k = 6, there is also another174
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distinct region over Greenland.175

176

When moving to k = 13, the increase in regions is still distributed the same way (more regions177

over the ocean for precipitation and more regions overland for temperature). However, and as can178

be seen in Figure 2d) there are several cell-thin regions which leads to the belief that the number179

of clusters is too high for the spatial resolution of this model.180

181

From the comparison of results obtained from different k’s in the K-Means algorithm, it can182

be concluded that k = 6 is, as predicted by the Gap Statistics, the best choice. It could be argued183

that applying k = 10 to the multivariate version of the clustering method yields equally good re-184

sults with the added value of a more localized regionalization. However, when using the univariate185

version, there are several cases of cell-thin regions suggesting that this number of clusters is too186

high for the resolution in use.187

3.2. Validation of the k regions188

Since both the Gap Statistics and the analysis of the results for different number of clusters points189

to six being the optimum k, it is worth looking into the differences in climatologies of the variables190

for each of the different regions. These differences can, not only show the differences between191

regions, but also serve as an objective characterization of the regions in terms of their climate192

change patterns in the long-term future.193

194

Since the regions were defined based on climate change in the seasonal cycle of precipitation, max-195

imum and minimum temperature, it is worth comparing the Probability Distribution Functions196

(PDFs) of two climates (recent-past and long-term future) of each region (Figure 3d) – i)). The197

Rank-Sum statistical test (see Section 2) was applied to the PDFs of the two climates. The only198

regions for whih the long-term future climate is considered to be different is R1 (with a confidence199

level of 95%) and R4 (confidence level 90%) and only for precipitation. The remaining PDFs can-200

not be considered significantly different. However, and since it was the daily climatology difference201

that was used to define the clusters, that was also tested using the Rank-Sum test. When testing202
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the region-averaged daily climatologies of the long-term future agains those of the recent-past, the203

results show that, for all six regions, the long-term future daily climatology is distinct from the204

recent-past one at a confidence level of 99%. These results point to an interesting development.205

While there is, on average, no significant climate change detection in the PDFs of the variables,206

for all the regions, that change is present and statistically significant in the climatologies, showing207

that, while detecting seasonal changes, those might not be evident in the original PDFs.208

209

On the left column of Figure 3, the mean regional seasonal climatological differences (deviations of210

the long-term future climatology from the recent-past climatology) for each variable can be seen,211

for the six regions. For all three variables, it is evident that each region presents different climato-212

logical changes, which vary throughout the seasons in distinct ways. That said, it can be seen that213

the climatological differences are always positive for both minimum and maximum temperatures214

(top two plots), pointing to a warming of all regions, albeit of different magnitude. Overall, the215

seasonal differences between the recent-past and long-term future are statistically significant at216

the 95% confidence level for temperatures and precipitation, for all regions. The exceptions are217

R2 and R6 in spring and R1 and R6 for autumn (marked with the asterisks).218

219

The regions showing largest climatological differences for both temperatures are R1 (north-Atlantic),220

R3 (northern Africa) and R6 (Central an eastern Europe) followed by R5 (Greenland). The largest221

differences found are for R3, with minimum temperature changes reaching an 8 ◦C increase (6 ◦C222

in maximum temperature) in the future during winter, and a 5 ◦C increase in both temperatures223

throughout the remaining seasons. On the other hand, R2 (northern Europe) and R4 (southern224

part of the Atlantic extending to the Mediterranean and IP) show the lowest magnitude of changes,225

ranging from ∼ 2.5◦C for the earlier and ∼ 3.5 ◦C for the later. These results point to a stronger226

warming in areas where temperatures tend to be more extreme, such as north Africa and central227

Europe which are warmer and Greenland where temperatures tend to be lower.228

229

When compared to temperature, precipitation changes (lower plot) show a different scenario,230
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with a less organized seasonal pattern, which would be expected due to the fact that precipitation231

(unlike temperature) is neither continuous in time or space. The regions which show higher and232

therefore significant changes throughout the seasons are R3, R4 and R5. In magnitude, the season233

showing largest changes is autumn with a decrease of ∼ 0.7 mm (R4 + R6) and increase of 1.5 mm234

(R2 + R3 + R5). R4, or the southern Atlantic and Mediterranean region shows a systematic235

and significant decrease of precipitation through the seasons while regions such as northern Africa236

(R3) and Europe (R2) and Greenland (R6) show increase in precipitation. Central Europe shows237

a redistribution of the rainfall patterns through the seasons, with its decrease in precipitation is238

mainly due to the summer. As for temperature, it is clear that the largest changes are projected239

for the most arid area of the domain (north Africa), as well as snow prone regions such as north240

Atlantic and Greenland.241

242

243

Table 1: Cross-test of the regions to determine if the daily climatologies of each of the variables are significantly

different for each region. Checks represent pairs of regions which have shown to be distinct from each other for all

three variables, at the 95% confidence level. The remaining pairs are considered to have the same distributions for

the mentioned variable. Dark gray cells show pairs of regions for which the precipitation distributions are considered

to be different, but only at the 90% confidence level.

R1 R2 R3 R4 R5 R6

R1 X tasmax X tasmin pr

R2 X X pr X

R3 X pr X

R4 X X

R5 tasmax

R6

In order to verify if the regions are significantly different from each other, the Rank-sum statistical244

test was applied to each pair of regions, at the 95% confidence level (Table 1). The only region245
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which is considered to be significantly different from all others at a 95% confidence level for all246

three variables under study is R4. However, if the confidence level is lowered to 90%, R2 also passes247

the test for all variables and is therefore concluded to be distinct from the other regions. Even248

though the distribution of one of the variables is not significantly different for some pairs of regions249

(as happens with R1 and R3 and R5 and R6 for maximum temperature, R1 and R5 for minimum250

temperature and R3 and R5 for precipitation), it is worth considering these regions as having251

different characteristics since the clustering is performed on several features (i.e. variables) rather252

than just one. This outcome shows a shortfall of this methodology which is, however, overcome253

by the fact that the method produces one set of regions based on the climate change of a group of254

variables.255

4. Concluding Remarks256

This work aims to develop a novel approach to the regionalization of a domain, in this case Europe,257

based on the climate change of a range of variables. The focus was on the long-term changes in258

precipitation, maximum and minimum temperatures. This was achieved by applying a K-Means259

clustering analysis to the daily climatological difference for each of the variables independently260

(univariate – not shown) and, most importantly, using each of the variables as a feature (multi-261

variate version). The result is a map in which each grid point is associated to a cluster (region).262

263

Results show that the multivariate version is congruent with the univariate version, although cre-264

ating new and more intricate features in the regions. For the optimum determined k (six), there265

is a clear latitudinal layering of the regions, which is then overrun by the inland-ocean differences.266

The Atlantic Ocean area is divided into northern and southern part, with the later extending over267

the Iberian Peninsula and the Mediterranean. Greenland, north Africa, Central to eastern and268

northern Europe comprise the other four regions.269

270

When analysing the seasonally averaged climatology differences for each region, it becomes clear271

that these regions have, in fact, different characteristics concerning precipitation, maximum and272
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minimum temperature projected changes, even though these are not statistically significant for273

every variable when region pairs are compared.274

275

Is is noteworthy that the maximum and minimum temperature changes projected for the long-term276

are positive and statistically significant in every region, pointing to a clear warming of Europe, for277

every season. Precipitation changes show a more complex outlook, with the Mediterranean and278

southern Atlantic showing a systematic and significant decrease in precipitation and regions such279

as northern Africa and Europe and Greenland showing increase.280

281

The sensitivity of the results to the number of regions was tested by performing the same method-282

ology for k = 3, 6, 10, 13. Results show that, when increasing the number of clusters considered283

there is increased detail in the spatial features obtained. However, due to the rather coarse reso-284

lution of the data, when k = 10, 13, single grid points of a region engulfed by other regions start285

to appear. These features may not be geographical and therefore, the number of clusters needs286

adaptation for different resolutions.287

288

Even though the seasonal climate change detected is not evident on the Probability Distribu-289

tion Functions of the original variables and that some regions were found to not be significantly290

different from each other concerning the changes of a variable, this methodology presents a novel291

way to approach the subject of identifying regions of coherent climate change. Furthermore, it292

creates the possibility to determine areas based on several variables, rather than just one.293
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Figure 1: Study domain to which the MPI-ESM-LR Earth System Model data was cut and model grid points (1.9◦

horizontal resolution.
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Figure 2: Regions in Europe as determined using K-Means Clustering Analysis applied to the climatology difference

between the recent-past (1986 – 2005) and long-term future (2081 – 2100) using a) k = 3, b) k = 6, c) k = 10 and

d) k = 13. Note that the colors are not correspondent to each other from panel to panel and that they only serving

only to allow better differentiatiation between regions inside each panel.
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Figure 3: The seasonal average of the daily climatology difference between the recent-past (1986 – 2005) and long-

term future (2081 – 2100) for a) maximum temperature, b) minimum temperature and c) daily total precipitation,

for each of the six regions obtained using the multivariate K-Means clustering analysis is on the left column.

Asterisks mark where the mean seasonal climatology difference is not statistically significant at the 95% confidence

level. The middle and right column represent the Probability Distribution Functions of d) maximum temperature,

e) minimum temperature and f) precipitation for the 1986 – 2005 and 2081 – 2100 periods respectively. These

regions are color-coherent with the regions in Figure 2.b).
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